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Abstract 
 
In this paper we describe a coalition formation model for a cooperative multiagent system in 
which each agent has incomplete information about its dynamic and uncertain world and must 
respond to sensed events within time constraints.  With incomplete information and uncertain 
world parameters while lacking time, an agent cannot afford organizing a rationally optimal 
coalition formation.  Instead, our agents use a two-stage methodology.  When an agent detects an 
event in the world, it first compiles a list of coalition candidates that it thinks would be useful, 
and then negotiates with the candidates.  A negotiation is an exchange of information and 
knowledge for constraint satisfaction until both parties agree on a deal or one opts out.  Each 
successful negotiation adds a new member to the agent’s final coalition.  The agent that initiates 
the coalition needs to determine the task distribution among the members of the coalition and 
designs its coalition strategy to increase the chance of successfully forming a working coalition.  
Since the environment is dynamic, noisy, and the agents are resource-constrained, agents must 
form the working coalition to react to events as soon as possible and with whatever partial 
information they currently hold. 
 

1. Introduction 
 
In this paper we describe a coalition formation model for agents with incomplete information and 
time constraints within a dynamic and uncertain world.  A coalition is a group of agents that 
collaborate to perform a coordinated set of tasks, that may be a response to an event that has 
occurred in the environment.  A dynamic coalition is one that is formed as a response to an event 
and dissolved when the event no longer exists or when the response is completed.  A coalition is 
necessary when an agent cannot respond to an event all by itself due to lack of information, 
knowledge, or functional capabilities.  Ideally, the agent would prefer to form an optimal 
coalition to maximize the yield of the system as a whole.  However, such optimal rationalization 
requires the agent to have complete information about its world and its neighboring agents, and 
also about the uncertainty associated with all factors related to the multiagent infrastructure.  
When that information is not readily available and the collection of that information is too costly, 
an agent cannot afford such optimality.  In the following, we elaborate on some of the problem 
characteristics. 

First, our model applies to an environment where each agent has incomplete information 
about its world.  Incomplete information may be due to (1) polling and updating costs, (2) 
constrained resources, and (3) decentralized information base. In a time-critical domain, agents 
may not afford to poll for information or update the changes in their perceived environments 
constantly.  Moreover, in cases where resources are constrained such as the size of a centralized 
blackboard, or shared communication channels, agents can only exchange information when 
necessary.  Further, in a domain where each agent senses its local world and maintains a local 
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information base at remote sites, it is prohibitive for every agent to share all local information 
bases as some information may not be needed and keeping the information concurrent may 
impose constraints on local agents unnecessarily.  As a result, when an agent needs to rationalize 
based on its profile of other agents to form a successful coalition, it can only do so based on 
partial or outdated information.  In a coalition formation process, that means the coalition-
initiating agent may know which other agents can be useful but can only guess at their 
willingness to help.  Our goal is to provide a model that increases the chance of a successful 
coalition formation. 

Second, an optimal rationalization for coalition formation may not be possible due to (1) 
noise and uncertainty in the environment, and (2) time constraints.  For example, the 
communication channels among the agents may be congested or faulty, messages may be noisy 
or lost, perceived events may be qualified inaccurately, and so on.  These uncertainties as a 
whole render rationally optimal (but otherwise arduous) planning less cost efficient compared to 
one that is more reactive, since the longer the initiating agent takes to respond to an event, the 
more likely it is going to change in the dynamic environment. Thus, an initiating agent has to 
compromise on the optimality of its coalition formation strategy before a change in the world 
pre-empts its effort.  Moreover, the domain environment that we want to address is highly time-
critical.  A coalition formation process has limited time to complete depending on the time 
available to respond to an event.   
 Third, in our problem domain, we assume all agents are peers—there is no hierarchy among 
the agents.  Each agent is able to sense its environment, revise its own perceptions, and form its 
own coalitions.  This allows the agents to be reactive to environmental changes, without having 
the directives passed from a higher-up agent while encouraging diversity in information stored at 
each agent.  We also assume agents are cooperative as opposed to self-interested.  Each agent is 
implicitly motivated to cooperate for the common good of the system while managing the usage 
of its allocated resources.  This allows our model to relax the computation of cost-benefit ratio 
requirements, which would have to be adhered to in an optimal rationalization.   
 Fourth, we propose using negotiations to refine a coalition.  We see negotiation as an 
exchange of necessary information pertinent to individual constraints, perceptions, and 
commitments.  This exchange of information is performed only when the coalition-initiating 
agent approaches potential coalition partners to request for help.  Thus, the exchange is efficient.  
It also allows both parties of a negotiation to update their viewpoints of each other, and that 
results in better-informed decision making in the future.  The motivation of a negotiation is for 
the initiating agent to persuade a potential coalition partner to agree to help.  Our negotiation-
based coalition formation also implies that even though the coalition-initiating agent is in charge 
of the entire formation process, the responsibility of making the decision to join lies on the 
shoulders of the potential coalition partners.  All the coalition-initiating agent can do is to 
prepare an initial coalition—based on whatever the information that it currently has—that it 
thinks has a high chance of success and proceed from there.  This negotiation allows the initial 
coalition to be less than optimal and to be computed hastily.   
 Fifth, unlike traditional coalition formation work that assume potential coalition members are 
readily willing to help, our model expects coalition members to refuse to join in a coalition, 
especially in a resource-constrained environment and also plans for failed communication due to 
congestion, noise, or message loss.  Thus, the initial coalition may not survive after negotiations 
as the working coalition is finalized.  Our model is also designed to withstand noise and 
uncertainty by incorporating insurance policies and algorithms that are greedy or worried. 
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 Briefly, our proposed model works as follows.  When an event is detected in a multiagent 
system, one of the agents initiates the coalition formation process in hope of organizing a group 
of cooperative agents to perform tasks in response to the event.  This initiating agent (also known 
as the “computing agent”  (Sandholm and Lesser 1995)) shoulders the responsibility of designing 
the best coalition given the situated information to increase the chance of forming a working and 
useful coalition at the end of the process.  The model consists of two stages.  First, during the 
coalition initialization, the initiating agent extracts a ranked list of useful agents.  Then, the 
initiating agent approaches the potential coalition partners and requests for negotiations during a 
coalition finalization step.  Our negotiation is based on a case-based reflective argumentative 
model (Soh and Tsatsoulis 2001).  Finally, the agent re-designs its coalition if it fails to satisfy its 
response to the triggering event and if time permits.  This three-step model allows an agent to 
form an initial coalition quickly to react to an event and to rationalize to arrive at a working final 
coalition as time progresses.   

In the following, we first discuss the agent characteristics of multiagent system that our 
model assumes.  Then, we present our dynamic negotiation-based coalition formation model in 
Section 3.  Subsequently, we describe our current work using the model in a multiagent sensor 
tracking problem domain and discuss some experimental results.  In Section 4 we describe some 
related work in coalition formation.  Finally, we conclude. 
 
2. Agent Characteristics 
 
Readers are referred to (Wooldridge and Jennings 1995) for a detailed discussion on various 
agent characteristics.  In general, our model assumes that agents have the following 
characteristics:  
(1) Autonomous – Each agent runs without interactions with human users.   
(2) Rational – Each agent is rational in that it knows what its goals are and can reason and 

choose from a set of options and make an advantageous decision to achieve its goal.  In the 
resource allocation domain, each agent is selfish as each attempts to preserve its control of 
CPU resources and conserve its power usage, for example.  Yet, each agent is bounded by a 
global objective that demands each agent cooperate to share resources.  The two balancing 
goals drive the rationality of our agents. 

(3) Communicative  
(4) Reflective – According to Brazier and Treur (1996) in their DESIRE framework, a reflective 

agent reasons based on its own observations, its own information state and assumptions, its 
communication with another agent and another agent’s reasoning, and its own control or 
reasoning and actions.   

(5) Honest – Each agent does not knowingly lie or intentionally give false information.  This 
characteristic is also known as veracity (Galliers 1988). 

(6) Cooperative -- Each agent is motivated by a set of global directives to help each other when 
possible to achieve global goals.  Each agent is honest and sincere during a negotiation—
does not intentionally provide faulty information just to convince another to perform a task 
or give up a certain resource.  The initiating agent trusts the responding agents that they must 
have their reasons for not agreeing to a deal during a negotiation, and also trusts the 
responding agents to commit to an agreement as best as possible.  There are in general three 
reasons why agents cooperate (Shehory et al. 1997).  First, an agent cannot perform a 
specific task by itself.  Second, an agent can perform a specific task, but other agents are 
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more efficient in performing the task.  Third, an agent can perform a specific task, but 
working on it collaboratively will increase the benefits from the task (or reduce the costs).   

We also assume that each agent exists in a neighborhood (Section 3.1) where it knows some 
basic properties of its neighbors (such as functional capabilities) and can communicate to them 
directly.  Each agent has one neighborhood, and each can exist in multiple neighborhoods of 
others.  It is from this neighborhood that an agent forms a coalition.   
 
3. Dynamic Negotiation-Based Coalition Formation Model 
 
In this section, we present our dynamic negotiation-based coalition formation model.  As 
discussed in Section 1, our agents operate in a dynamic, real-time and uncertain world.  When an 
agent detects an event, it selects from its neighborhood a subset of neighbors as the initial 
coalition candidates.  It determines the task allocation among the candidates and how it should 
approach these candidates via negotiations.  Thus, it shoulders the initial computation cost for the 
coalition formation.  Subsequently, the agents negotiate to exchange information on their 
respective constraints, commitments, and perceptions.  This allows the coalition to be refined as 
time progresses.  Eventually, all negotiations complete with either a success or a failure.  The 
initiating agent and the candidates that agree to help become members of the final coalition.   
 In our domain, due to the uncertainty in message loss and noise and the dynamic nature of 
the system, not all coalition candidates become the eventual coalition members.  Thus, an 
initiating agent must design its coalition formation strategy with that in mind.  Our coalition 
formation model consists of two stages: coalition initialization (Section 3.3) and coalition 
finalization via negotiations (Section 3.4).  An interruptible mechanism can be installed in the 
initialization stage; for example, to stop coming up with feasible coalitions when the time 
allocated to the step runs out.  The coalition finalization stage is interruptible and adaptive as an 
agent can elect to stop negotiations when it sees fit.   
  
3.1. Neighborhood 
 
As previously discussed in Section 2, each agent, ia , has a neighborhood, 

iaη .  It knows some 

intrinsic information about all neighbors, 
ii aak ηη ∈, , in this neighborhood such as a neighbor’s 

physical location, its functional capabilities, and so on.  The functional capabilities of an agent 

ia  are denoted as 
iaf .  An agent can belong to different neighborhoods concurrently; however, it 

does not necessary have knowledge about those neighborhoods except its own.  An agent can 
communicate directly with all its neighbors, and each neighbor can communicate with the agent 
directly as well.  However, those neighbors may not be able to communicate with each other 
directly because they are not necessarily neighbors of each other.  Suppose we denote the ability 
to communicate directly by an agent, ia , with another, ja , as ( )ji aaComm , .  Then in a 

neighborhood of ia , ( )ji aaComm ,  and ( )ij aaComm ,  are true for all 
iaja η∈ . 

 
3.2. Events  
 
When an agent senses an event, it measures and collects its properties to perceive it.  It is this 
perception that quantifies the event to facilitate the subsequent coalition design.  Suppose an 
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event is denoted as ie .  It has a time stamp when it was detected, 
iedetectedt , , a time stamp when it 

is no longer valid, 
ieendt , , and a categorical type of the event, 

ietype .  The agent has knowledge 

about events of the type 
ietype , denoted as ( )τ=Κ

ietype .  It contains three basic items: τδexpected,  

for the expected duration during which the event will be valid, τΘ  for the set of tasks devised as 

the standard response to the event, and τΩ for the coalition formation strategy.   

 τΘ  determines the sequence of tasks that an agent performs in reaction to an event.  For 

example, suppose an agent senses that it is currently using close to the level of CPU resource that 
it has been allocated with, then it declares an event, =τ CPU_SHORTAGE.  GECPU_SHORTA=Θτ  

may specify the following:  
(1) re-organize the CPU distribution within all the processing threads of the agent,  
(2) check to see whether the CPU shortage still persists 

(2.1) if yes, then go to step (3);  
(2.2) otherwise, exit from τΘ , 

(3) compute the desired additional CPU allocation, 
(4) request from the operating system for additional CPU allocation, 

(4.1) if granted, then exit from τΘ ; 

(4.2) otherwise, go to step (5), 
(5) obtain from the operating system all the agents (including their respective CPU 

allocations) sharing the same CPU resource on the same platform, 
(6) perform dynamic, negotiation-based coalition formation using τΩ , 

(7) carry out all deals resulted from successful negotiations, 
(8) check to see whether the CPU shortage still persists 

(8.1) if yes, then go back to step (1);  
 (8.2) otherwise, exit successfully from τΘ . 

Equipped with this knowledge, an agent can react to events consistently and plan out its tasks.   
 τΩ  specifies the coalition formation strategy which we discuss in detail in the ensuing 

sections. 
 
3.3. Coalition Initialization 
 
The first stage of the dynamic, negotiation-based coalition formation algorithm is the 
determination of the set of the initial coalition candidates, denoted as ( )jiini ea ,Λ  for agent ia  and 

event je .  This notation allows an agent to have concurrent multiple coalitions, one for every 

event that it is currently handling.  We denote a candidate as kα .  In this section, we first discuss 

different approaches to coalition initialization. Then, we discuss the ranking of coalition 
members, and even coalitions.  Subsequently, we present some task allocation algorithms.    
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3.3.1. Approaches to Coalition Formation 
 
In our model, we identify four general scenarios of coalition formation: resource-driven, task-
driven, function-driven, and utility-driven.   

In a resource-driven coalition formation process, the underlying objective is resource 
allocation among the agents.  For an initiating agent to generate ( )jiini ea ,Λ , it needs to know the 

list of agents currently using the same resource.  Let us denote this list as ( )t
iar ,Ψ  for agent ia , 

resource r, and at time t.  If the event je  calls for the re-allocation of a resource r, then 

( ) ( )
ii aarjiini tea η∩Ψ=Λ ,, .   

In a task-driven approach, the agents are homogeneous in their functional capabilities and 
only differ in what they know based on their experience, perception, and database.  For example, 
in a multiagent database query system, some information sharing or exchange needs to take place 
to satisfy a query.  The agents in this example are homogeneous in their functional capabilities 
but differ in what information they can maintain and provide.  As a result, an initiating agent 
needs to obtain a ( )t

iaq,Ψ , for example, that contains the candidates with the necessary 

information for responding to the query q.  As such, the flexibility in the coalition design is 
reduced compared to the resource-driven approach discussed above.  IThus, the initiating agent 
obtains ( )t

iaf ,Ψ  in which all members in the list have the same functional capability f that is 

needed to respond to event je .  We also denote all functional capabilities that an agent ia  knows 

how to perform as 
iaF .  This information may be stored in each agent during start up, or be 

furnished on request, or be registered with a centralized service, or advertised at a common 
blackboard.  The initiating agent then obtains ( ) ( )

ii aafjiini tea η∩Ψ=Λ ,, .  Note that the set of 

functions needed to tackle an event is documented in ( )τ=Κ
ietype .  We also denote such a set of 

functions for an event type τ  as τF . 

In a function-driven approach, the agents are heterogeneous in their functional capabilities—
each knows how to perform a different set of functions.  As a result, the coalition design is even 
less flexible compared to the task-driven approach discussed above.  For example, suppose there 
is a multiagent system that maintains a large database with three different agents: an interface 
agent, a search agent, and a reporting agent.  When a query comes in through the interface agent, 
a coalition is formed by the interface agent that calls upon the search agent to retrieve the queried 
results from the database and the reporting agent to output in a format specified by the user.  
Since each agent is specialized to do a particular set of functions, the interface agent must pick 
the other two agents as the coalition members.  In this restrictive manner, the coalition formation 
is rather straightforward.  Once again, we denote a set of functions required to respond to an 
event type τ  as τF , and in this function-based approach, 1>τF .  An initiating agent obtains the 

list of useful agents as ( )t
iaF ,τ

Ψ  and ( ) ( )
ii aaFjiini tea η

τ
∩Ψ=Λ ,, .   

 When there is flexibility in the coalition design, one can have a utility-driven approach to 
coalition initialization.  For example, in the resource-driven or the task-driven approaches, the 
initiating agent may want to narrow down ( )jiini ea ,Λ  to include only what it considers the most 

helpful agents.  In a strict function-based approach, there is not much flexibility to facilitate 
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utility-based optimization.  However, in a system where each agent is capable of some 
overlapping set of functions, one can then improve the coalition initialization using utility.  
Suppose an event type τ  with τF  is detected, and thus the initiating agent knows that the 

eventual coalition must perform { }NfffF ,,, 21
�=τ  to respond to the event.  It also knows that 

all agents in its neighborhood know how to perform all the functions but does not know whether 
they can do it as requested at the current time and situation.  As a result, for each function, it 
forms a sub-coalition such that ( ) ( ) ( ) ( ){ }Niiniiiniiinijiini fafafaea ,,,,,,, 21 ΛΛΛ=Λ � .  Each sub-

coalition can then adopt a task-driven approach and enjoys greater flexibility in its design.  We 
will discuss general inter-coalition issues in Section 3.6. 
 
3.3.2. Evaluation of Coalitions and Coalition Members 
 
In our dynamic, negotiation-based coalition formation model, the initiating agent ia  first 

generates the initial coalition candidates, ( )jiini ea ,Λ , to deal with an event je .  ( )jiini ea ,Λ  

represents the neighbors that it thinks can be of help to respond to je .  To find out whether these 

candidates are willing to help, the initiating agent needs to negotiate.  Negotiation is a process of 
exchange of information on individual commitments, constraints, and perceptions and may be 
lengthy and time-consuming.  Hence, the initiating agent must think twice about whom to 
approach first.  This motivates the agent to evaluate its coalition members.  The objective is to 
rank the candidates on their potential utility values to the coalition so that the initiating agent can 
negotiate with the agents with the highest utility values first.   
 For a candidate ( )jiinik ea ,Λ∈α , we base its potential utility, 

ik aPU ,α , on three sets of 

attributes: (1) the past relationship between the initiating agent and the candidate, ( )trel kapast i
,, α , 

where t is the point in time when the set of attribute-value pairs in the relationship is collected, 
(2) the current relationship between the initiating agent and the candidate, ( )trel kanow i

,, α , and (3) 

the ability of the candidate in handling the event, ( )teability jkai
,,α .  All these sub-utility 

measures map into 10: �ℜ  and each is asymmetric such that ( ) ( )tareltrel ipastkapast ki
,, ,, αα ≠ .   

 Now, we define the past relationship between an agent ia  and a candidate kα .  First, suppose 

that the number of negotiations initiated from an agent ia  to kα  is ( )kinegotiate a α→Σ , the number 

of successful negotiations initiated from an agent ia  to kα  is ( )→success

negotiate kia α , the number of 

negotiation requests from kα  that ia  agrees to entertain is ( )→entertain

negotiate ik aα , the total number 

of all negotiations initiated from ia  to all its neighbors is ( )
iainegotiate a η→Σ , and the total number 

of all successful negotiations initiated from ia  to all its neighbors is ( )→success

negotiate ai i
a η .  In our 

model, ( )trel kapast i
,, α  includes the following:   

(a) the helpfulness of kα  to ia : 
( )
( )kinegotiate

success

negotiate ki

a

a

α
α

→Σ

→
, 
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(b) the importance of kα  to ia : 
( )

( )
iainegotiate

negotiate ki

a

a

η
α

→Σ

→
,  

(c) the reliance of ia  on kα : 
( )
( )→

→
success

negotiate ai

success

negotiate ki

i
a

a

η

α
,  

(d) the friendliness of ia  to kα : 
( )
( )→

→

negotiate ik

entertain

negotiate ik

a

a

α
α

, 

(e) the helpfulness of ia  to kα : 
( )
( )→

→
entertain

negotiate ik

success

negotiate ik

a

a

α

α
, and 

(f) the relative importance of ia  to kα :  
( )
( )→

→

negotiate ki

negotiate ik

a

a

α

α
. 

The higher the value of each of the above attributes, the higher the potential utility the agent ja  

may contribute to the coalition; i.e., each is proportional to ( )trel kapast i
,, α .  The first three 

attributes tell the agent how helpful and important a particular neighbor has been.  The more 
helpful and important that neighbor is, then it is better to include it in the coalition.  On the other 
hand, the second last attributes tell the agent the chance of having a successful negotiation.  The 
agent expects the particular neighbor to be grateful and more willing to agree to a request based 
on the agent’s friendliness, helpfulness and relative importance to that neighbor.  Note that the 
above attributes are based on data readily collected whenever the agent ja  initiates a request to 

its neighbors or whenever it receives a request from one of its neighbors.  To further the 
granularity of the above attributes, one may measure them along different event types: for each 
event type, the initiating agent records the above six attributes.  This allows the agent to better 
analyze the utility of a neighbor based on what type of events that it is currently trying to form a 
coalition for.  In that case, an event type would qualify all the above attributes.  

Now, we define the current relationship between an agent ia  and its neighbor kα .  Suppose 

the number of concurrent negotiations that an agent can conduct is #negotiation_threads, and the 
number of tasks that the agent ia  is currently executing as requested by kα  is 

( )( )=
execute ak i

taskinitiatortask ,: η .  Suppose ( )→success

negotiate kia α  is the number of ongoing 

negotiations initiated from ia  to kα .  In our model, ( )trel kanow i
,, α  includes the following: 

(a) negotiation strain between ia  and kα :  
( )

threadsnnegotiatio

a
ongoing

negotiate ki

_#

→ α
, 

(b) negotiation leverage between ia  and kα :  
( )

threadsnnegotiatio

a
ongoing

negotiate ik

_#

→α
, and 

(c) degree of strain on ia  from kα :  
( )( )
( )( )∈

=

execute a

execute k

i
taskinitiatortask

taskinitiatortask

η
α

:

:
. 
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The first attribute is inversely proportional to ( )trel kanow i
,, α  and the other two are proportional to 

( )trel kanow i
,, α .  The first attribute approximates how demanding the agent is of a particular 

neighbor.  The more negotiations an agent is initiating to a neighbor, the more demanding the 
agent is and this strains the relationship between the two and the negotiations suffer.  The last 
two attributes are used as a leverage that the agent can use against a neighbor that the agent is 
negotiating with, about a request initiated by the neighbor.  
 Now, we deal with the ability of the candidate to handle an event je , ( )teability jkai

,,α .  

While ( )trel kapast i
,, α  and ( )trel kanow i

,, α  are both domain-independent utilities, ( )teability jkai
,,α  

is domain-specific.  For example, in a database system, if a coalition requires a reporting agent 
and kα  is a reporting agent, then it has a high ability measure.  In a computing system, if an 

agent kα  has a high CPU allocation and the coalition formed is for CPU re-allocation to alleviate 

a computing crisis for agent ia , then ( )teability jkai
,,α  is high.  Note also that both ( )trel kapast i

,, α  

and ( )trel kanow i
,, α  are time-dependent because the measures change over time as the agent 

interacts with its neighbors and world.  ( )teability jkai
,,α  is also time-dependent though not as 

obvious.  An event is dynamic and thus may require different responses depending on its 
characteristics even if its is of the same type.  ( )teability jkai

,,α  is further influenced by the 

current status of the agent ia .  Depending on the ability of the agent itself to handle an event due 

to its current schedule of tasks and computing resources, a candidate kα  that can perform 

approximately what ia  wants may be better than another candidate that can perform exactly what 

ia  wants but for a shorter duration1.  For example, suppose an event requires { }321 ,, fffF =τ  and 

ia  knows how to perform all three functions, candidate kα  knows how to perform 2f , and 

candidate lα  knows how to perform 3f .  Suppose that ia  is currently performing 2f  and 3f  for 

another event, and thus it needs its neighbors to perform 2f  and 3f  for the current event while it 

shoulders the responsibility for 1f .  On the other hand, suppose that ia  has only one negotiation 

thread available, meaning that it can only negotiate with one coalition candidate.  Thus, it needs 
to decide between kα  and lα .  When ( )teability jlai

,,α  is further analyzed, the agent realizes that 

it will soon finish its own execution of 3f , hence the adjusted ability of lα  decreases since the 

agent ia  can rely on itself to perform the function in a short time.  In addition, functions or tasks 

can be prioritized.  Here are some priority heuristics that add to the ability of a candidate: (a) if a 
candidate can provide a functional capability of high uniqueness to the coalition, (b) if a 
candidate can provide a functional capability of high importance (with inflexible constraints) to 
the coalition, (c) if a candidate can provide a functional capability that is very time consuming, 
or (d) if a candidate can provide a functional capability that is resource taxing.   

                                                 
1 Assuming that it is more likely to reach a deal when the request is flexible from the initiating agent, it is then easier 
to form a coalition when approximated abilities are acceptable. 
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 Finally, the potential utility, 
ik aPU ,α , of a candidate kα  is a weighted sum of ( )trel kapast i

,, α , 

( )trel kanow i
,, α , and ( )teability jkai

,,α 2: 

 

( ) ( ) ( ) ( )[ ]teabilitytreltrelWPU jkakanowkapasteaa iiijiiniik
,,,, ,,,, αααα •= Λ  

 

where ( ) �
�
�

�

�

�
�
�

�

�

=Λ

ji

ji

ji

jiini

eaability

eanow

eapast

ea

w

w

w

W

,,

,,

,,

,  and 1,,,,,, =++
jijiji eaabilityeanoweapast www .  Note that ultimately 

these weights may be dynamically dependent on the current status of ia  and the event je .  A 

higher resolution of 
ik aPU ,α  is the following.  Suppose that the functions needed to be 

implemented as the response to the event type τ  are { }NfffF ,,, 21
�=τ .  The ability, 

( )teability jkai
,,α , as viewed by the initiating agent ia , of a candidate kα  includes a matrix of 

scores when kα  is multi-functional such that  

 

( ) ( ) ( ) ( )[ ]tfyabilittfyabilittfyabilitteability Nkakakajka iiii
,,,,,,,, 21 αααα ′′′= � . 

 
As a result, 

ik aPU ,α  can be further specified as { }
iNkikikik afafafa PUPUPUPU ,,,,,,, ,,,

21 αααα �= .  In 

a homogeneous system, all such sub-utility values will be non-zero.  But in a heterogeneous 
system where an agent may not have all the functions needed in { }NfffF ,,, 21

�=τ , some of 

the sub-utility values will be zero.  This resolution allows the initiating agent to perform task-
based selection and assignment. 
 In a scenario where there are multiple coalitions, the agent needs to rank them before 
negotiations.  The potential utility of a coalition is the total sum of all its candidates’  potential 
utilities.  In addition, we have the following heuristics to further qualify the potential utility of a 
coalition:  (a) if the number of candidates is too large, then the overall utility goes down, (b) if 
the demand/request by the initiating agent of one or more candidates is overwhelming, then the 
overall utility goes down, (c) if the demands/requests are evenly distributed, then the overall 
utility goes up, (d) if the demands/requests are inflexible, then the overall utility goes down; and 
vice versa, (e) if the expected time for the coalition formation to be completed is high—judging 
from its past communication behavior, then the overall utility goes down, (f) if the expected time 
for the solution to be completed is high, or the expected cost of the solution to be completed is 
high, then the overall utility goes down, and (e) in the case of multiple coalitions of different 
events competing for execution, if the event for which the coalition is designed for is of a high 
priority, then the overall utility goes up.  Equipped with these heuristics, an agent can choose 
among its set of initial coalitions to react to a specific event immediately.   

                                                 
2 Strictly, the notation for 

ik aPU ,α  should be 
jik eaPU ,,α .  But to simplify our discussions here, we use 

ik aPU ,α  

since we deal with only one event at a time.  In Section 3.7 where we talk about multiple coalitions, we will use 

jik eaPU ,,α . 
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 Note that the design of the coalition evaluation is motivated by two concerns.  First, we want 
to have a good-enough and soon-enough coalition.  In a dynamic and time-critical environment, 
agents do not have time or resources to obtain and maintain perfect information that is needed to 
rationalize about options for an optimal coalition, as assumed by most work in coalition 
formation (Section 5).  Hence, we use (1) domain-independent data readily collected when 
agents negotiate and the current status of an agent to estimate that optimality value, and (2) 
utility-based heuristics designed to promote more efficient coalition formation.  We can afford to 
use this sub-optimal strategy since our model subsequently performs negotiations to finalize the 
coalition and other coalition-related refinements that are time aware, making the coalition more 
reflective of the dynamic and uncertain characteristics of the events and the environment.  This 
also allows the agents and the system as a whole to be both reactive and rational.  More 
importantly, an agent does not spend unnecessary computational resources in the rationalization 
of its coalition that may end up inadequate or useless after negotiations and finalization.  Second, 
we want to have a good-enough and soon-enough coalition that has the best chance to survive. 
This second concern means that the model is designed to try to retain as much as possible the 
initial coalition when the coalition is finalized.  Whether the coalition will be able to carry out its 
tasks and achieve its goals successfully becomes a secondary issue.   
 Note that since our coalition finalization is negotiation-based, that means the initial coalition 
is biased towards increasing the chance of having successful negotiations among the initiating 
agent and its candidates.  This is evidenced in our use of heuristics to compute the potential 
utility of the candidates.  We will talk about the negotiations in Section 3.4. 
 Finally, note that the above evaluation approach is a form of reinforcement learning, in which 
the initiating agent learns to rank neighbors that have been helpful higher in its coalition 
initialization stage.  We will discuss experiments from the viewpoint of learning for coalition 
formation in Section 4.4. 
  
3.3.3. Task Allocation and Assignment 
 
After ( )jiini ea ,Λ  is determined, the initiating agent needs to design a task allocation plan.  For a 

task-driven or function-driven approach, the plan is dictated by the knowledge stored for the type 
of the event, ( )τ=Κ

ietype .  Based on the potential utility 
ik aPU ,α  of a candidate kα , the 

initiating agent matches a particular task in the plan to a candidate.  If there is at most one task 
assigned to a candidate, we call the assignment 1-to-1; otherwise, many-to-1.  
 First we address the trivial scenarios.  In a homogeneous, uni-functional multiagent system 
for a task-based approach, every agent knows how to perform exactly the same and the only one 
function, f.  In this case, the initiating agent simply negotiates with each candidate to perform 
their respective tasks—i.e., executing f on the contexts that each individual agent knows.  In a 
heterogeneous, uni-functional multiagent system for a function-based approach, every agent, kα , 

knows how to perform only one unique function 
k

fα . The initiating agent here simply assigns 

the task to the candidate that can perform it.   
 In a multi-functional system, however, the initiating agent has more flexibility in its task 
allocation and assignment.  First, if the agents are functionally homogeneous and if the task 
allocation is 1-to-1, then the initiating agent computes the 

ik aPU ,α  value for each candidate kα , 

including the individual 
ink afPU ,,α  values for Nn �1= .  In reality, it is likely to have at least 
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one agent that scores the highest abilities for more than one task.  In this scenario, if the task 
allocation is 1-to-1, then we adopt the following algorithm: 
 

Algorithm Priority-Based 1-To-1: (1) rank all prioritized sub-utility 
ink afPU ,,α  values by 

their scores, (2) select the top score 
ink afPU ,,α , assign nf  to the candidate kα , and 

remove all kα -related scores from the candidate pool, and (3) go back to step 2 until all 

tasks in { }NfffF ,,, 21
�=τ  have been assigned to a unique candidate.   

 
On the other hand, if the task allocation is many-to-1, meaning that the initiating agent can assign 
more than one task to a single candidate as long as the tasks do not conflict each other in 
resource usage, time constraints, and goals, then we adopt the following algorithm: 
 

Algorithm Priority-Based Many-To-1: Initialize n = 1. (1) rank all prioritized sub-utility 

ink afPU ,,α  values by their scores, (2) assign the task nf  to the candidate with the top 

ink afPU ,,α , and (3) increment n and go back to step (2) until n = N.  

  
 Second, if the agents are functionally heterogeneous, then the task allocation and assignment 
algorithm follows that for the case in which the agents are functionally homogeneous in both the 
1-to-1 and many-to-1 scenarios.  Note that the candidates with unique functional capabilities will 
have high 

ink afPU ,,α  values, allowing those tasks to be assigned first.  

 At the end of task allocation and assignment, the initiating agent has a list of task-candidate 
pairs or the assignment.  We denote this assignment as ( ) { }Pja teassign

i
ρρρ ,,,, 21 �=  where P 

is the total number of assignments, and ρραρ f,=  states the candidate with its assigned task.  

This list is also sorted, with the top-prioritized assignments first. 
 What we have discussed above are clear-cut, simplified approaches to task allocation and 
assignment.  However, to further increase the optimality of the coalition and task distribution, we 
have the following guidelines. 
 
Bounded Flexibility 
 
The number of coalition members that an initiating agent can approach is bounded by its 
available resource.  For example, suppose an agent has a set of negotiation threads, 

{ }Rγγγγ ,,, 21 �= .  Each rγ  is spawned at the startup of an agent and is capable of conducting a 
negotiation with another negotiation thread of another agent.  Then, the number of coalition 
members to be approached is determined by (1) the number of negotiation threads that are 
currently available, and (2) the availability of computational resource that the agent currently has 
to support the eventual negotiations.  As a result, together the two factors determine a hard 

constraint, ( )
� �

jiapproached ea ,Λ , that specifies the number of coalition members to be approached. 

 If ( )
� �

jiapproached eaF ,Λ≤τ , then the initiating agent simply uses the above task allocation and 

assignment algorithms. 
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 In a 1-to-1 task allocation case, if ( )
� �

jiapproached eaF ,Λ>τ , then the coalition cannot be 

successfully formed.  The initiating agent may quit and ignore the event, or continue doing 

whatever it can: approaching the top- ( )
� �

jiapproached ea ,Λ  candidates on its list with requests to 

perform the top-prioritized tasks.  This is not entirely irresponsible, as it is possible that the 
candidates may spawn off their own coalitions afterwards, causing a chain reaction (Section 3.6).  
The modified algorithm thus becomes: 
 

Algorithm Priority-Based 1-To-1 Bounded: (1) rank all prioritized sub-utility 
ink afPU ,,α  

values by their scores, (2) select the top score 
ink afPU ,,α , assign nf  to the candidate kα , 

and remove all kα -related scores from the candidate pool, and (3) go back to step (2) 

until (a) all tasks in { }NfffF ,,, 21 �=τ  have been assigned to a unique candidate or (b) 

the number of candidates assigned so far is equal to ( )
� �

jiapproached ea ,Λ . 

 

 In a many-to-1 task allocation scenario, if ( )
� �

jiapproached eaF ,Λ>τ  and it is possible to assign 

non-conflicting tasks to one candidate, then we have the following algorithm: 
 

 Algorithm Priority-Based Many-To-1 Bounded: Initialize n = 1.  (1) rank all prioritized 
sub-utility 

ink afPU ,,α  values by their scores, (2) assign the task nf  to the candidate with 

the top 
ink afPU ,,α , (3) increment n and go back to step (2) until n = N, (4) if the number 

of candidates assigned is greater than ( )
� �

jiapproached ea ,Λ  then perform Algorithm Task 

Shuffle, with the assignment ( ) { }Pja teassign
i

ρρρ ,,,, 21 �=  as the argument, and (5) if 

the algorithm returns with a failure, then remove the last members of ( )teassign jai
,  until 

P = ( )
� �

jiapproached ea ,Λ . 

 
Algorithm Task Shuffle (Lazy):  Initialize i = 1.  (1) if i = P, then return with a failure, (2) 
absorb Pρ  into iρ  and re-organize ( )teassign jai

, , (3) if the absorption fails, then 

increment i by 1 and go back to step (1), (4) otherwise, if new P > ( )
� �

jiapproached ea ,Λ , then 

go back to step (1), (5) otherwise, return with a success and a new ( )teassign jai
, . 

 
The function ( )ijabsorb ρρ ,  returns true if the agent is able to absorb the task-candidate pair jρ  

into iρ , making 
iρα  performing both 

i
f ρ  and 

j
f ρ .  When the assignment is re-organized, the 

task-candidate pair that has been absorbed is removed from the list, and the new task-candidate 

pair has become { }
jii

ffi ρρραρ ,,= .  As a result, the total number of assignments decreases by 

1, resulting in a new P.  Note that the function ( )ijabsorb ρρ ,  is domain-specific guided by 
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domain-independent rules.  Basically, absorption is feasible only if the two tasks do not compete 
for the same resource and do not have conflicting goals.  In addition, the above task-shuffling 
algorithm is lazy as it tries to dump all the extra assignments into the first (and top-prioritized) 
task-candidate pair.  This may be rational, as the first candidate associated with the top-
prioritized task-candidate pair is more likely to become a useful coalition member.  Variants of 
the task-shuffling algorithm involve modifications to the fourth step.  Instead of going to the 
same task-candidate pair, one may want to increment i by 1.   
 
Soft-Bounded Flexibility 
 
It is also practical to include soft constraints such that the number of coalition members that an 
initiating agent wants to approach is bounded by its beliefs and intentions.  For example, if the 
initiating agent is anticipating a highly important event to occur in the next time step, then it may 
want to reserve some of its resources to respond to that event.  As a result, it may not want to 
respond fully to the current event.  This anticipatory behavior introduces soft-bounds.  If an 

agent decides to soft-bound its ( )
� �

jiapproached ea ,Λ , then it may want to remove the last members 

of ( )teassign jai
,  that are of low 

ik aPU ,α  values since the chance of negotiating successfully with 

each of these candidates is low and the utility of its contribution is low as well.   
 
Imperfect Coalition and Greedy Algorithms 
 
As mentioned previously, when an initiating agent is faced with a dilemma where it has more 
negotiations to perform than it has available resources to conduct negotiations with its coalition 
members, it either (1) quits or (2) continues with as many negotiations as possible to recruit as 
many coalition members as possible.  This is feasible since each agent in our system is capable 
of forming a coalition dynamically on its own.  Each agent has the knowledge on how to deal 
with events that it senses and reacts to it.  In a way, this implies that if the initiating agent can get 
the message out, then hopefully the coalition members will pass the message along to their own 
coalition members.  So, an initiating agent does not necessarily have to plan for a perfect 
coalition solution for an event.  Moreover, it is unlikely to obtain a perfect coalition solution 
even with a perfect plan since the coalition formation process is subjected to dynamic changes in 
the environment, noise, message loss, refusals to negotiate, and failed negotiations.  Thus, we 
have lazy and greedy algorithms that are opportunistic.  Our task-shuffling algorithm above is 
lazy, as it does not solve for the optimal absorption, for example. 
 Here, we introduce a greedy algorithm for task allocation and assignment, for a multi-
functional, heterogeneous multiagent system, in a 1-to-1 task allocation scenario.  First, we 
define a modified prioritized utility score called the focused utility.  We denote it as: 
 

( ) ( ) ( ) ( ) ( ) ��
���� ′+

•=′ Λ 2

,,,,
,, ,,,,,

tfyabilitteability
treltrelWUP nkajka

kanowkapasteaaf
ii

iijiiniink

αα
ααα . 
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So the utility value has an emphasis in what particularly the candidate kα  knows how to do, 

from the point of view of the initiating agent ia , in an initial coalition of ( )jiini ea ,Λ .  If an agent 

has n functional capabilities that suit the tasks that the initiating agent wants done, then it has n 
such focused utility values.  Then we have the following algorithms: 
 

Algorithm Greedy Priority-Based 1-To-1 Bounded:  Initialize n = 1.  (1) rank all focused 
utility values, (2) assign the task nf  to the candidate with the top 

ink afUP ,,α′ , (3) remove 

all utility values of that candidate from the ranking, (4) increment n and go back to step 

(2) until n = ( )
� �

jiapproached ea ,Λ .   

 
Algorithm Greedy Priority-Based Many-To-1 Bounded:  Initialize n = 1.  (1) rank all 
focused utility values, (2) assign the task nf  to the candidate with the top 

ink afUP ,,α′ , and 

(3) increment n and go back to step (2) until n = ( )
� �

jiapproached ea ,Λ . 

 
An initiating agent becomes greedy when practicing the above algorithms because (1) it tries to 
minimize its own rationalization and computing process, (2) it selects the candidate with the 
higher overall utility values to approach hoping for a successful negotiation, (3) it cares mostly 
about high-priority tasks, (4) it tries to maximize its chance of getting a particular task done—by 
including sub-utilities in the focused utility evaluation, and (5) it hopes to shift its responsibility 
(partially) to the candidates via successful negotiations—expecting the candidates to spawn their 
own coalitions to help respond to the event. 
 
Insurance and Worried Algorithms 
 
Since negotiations cannot be guaranteed to be always successful, that means some initial 
candidates may be dropped from the final coalition.  This also implies that if an initiating agent 
over-relies on one particular candidate, then the initiating agent may lose a large portion of the 
coalition’s utility.  So, in the task allocation and assignment process, we can build in some 
insurance policies—some alternative plans—to at least absorb the impact of such disasters.  Of 
course, an initiating agent considers these plans only when it has enough computational 

resources to do so, i.e., ( )
� �

τFea jiapproached >Λ , .  As such, we have the following worried 

algorithms: 
 

Algorithm Worried Priority-Based 1-To-1 Bounded: (1) rank all prioritized sub-utility 

ink afPU ,,α  values by their scores, (2) select the top score 
ink afPU ,,α , assign nf  to the 

candidate kα , and remove all kα -related scores from the candidate pool, (3) go back to 

step (2) until all tasks in { }NfffF ,,, 21 �=τ  have been assigned to a unique candidate, 

(4) repeat steps (2)-(3) until number of candidates assigned so far is equal to 

( )
� �

jiapproached ea ,Λ . 
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 In a many-to-1 task allocation scenario, if ( )
� �

τFea jiapproached >Λ ,  and it is possible to assign 

non-conflicting tasks to one candidate, then we have the following algorithm: 
 

 Algorithm Worried Priority-Based Many-To-1 Bounded: Initialize n = 1.  (1) rank all 
prioritized sub-utility 

ink afPU ,,α  values by their scores, (2) assign the task nf  to the 

candidate with the top 
ink afPU ,,α , (3) increment n and go back to step (2) until the 

number of  candidates assigned so far is equal to ( )
� �

jiapproached ea ,Λ  . 

 
Note that the insurance assignments as a result of the worried algorithms will be aborted 
once the initiating agent has achieved a satisfactory coalition (e.g., as different negotiations 
complete with successes).  We will discuss this further in Section 3.4.2. 
 
Over-Demanding and Caps 
 
Of course, the lazy and greedy algorithms may end up assigning all tasks to a single agent.  This 
becomes an over-demanding scenario that complicates the negotiation, and, as a result, the 
coalition may suffer.  Hence, the number of assignments for a candidate has to be bounded when 
the computational resource of the initiating agent can afford it.  The cap can be determined 
dynamically.  For example, if the primary task that the initiating agent wants the candidate to 
perform is extremely important, or highly unique, then it is better for the initiating agent to not 
over-demand in its approach to the candidate.  On the other hand, if the candidate has been very 
helpful and friendly, then the initiating agent may be able to take advantage of that relationship 
by over-demanding.  Suppose we denote the cap for an assignment ρ  for candidate kα  as � �

k
f

αρ , then � � ( )trelf kapast ik
,, α

αρ ∝ , � � ( )trelf kanow ik
,, α

αρ ∝ , and � � ( )teabilityf jkaik
,,1 α

αρ ∝ .  

And these caps can be inserted into all the algorithms above to prevent too many assignments to 
a single agent. 
 
3.3.4. Resource-Driven Allocation 
 
In this subsection, we deal with resource allocation and assignment.  In a resource-driven 
approach, we still have  

( ) ( ) ( ) ( )[ ]teabilitytreltrelWPU jkakanowkapasteaa iiijiiniik
,,,, ,,,, αααα •= Λ . 

 
However, we have a higher resolution of 

ik aPU ,α .  Suppose that the resources to be obtained by 

the initiating agent as the response to the event type τ  are { }NrrrR ,,, 21 �=τ .  The ability, 

( )teability jkai
,,α , as viewed by the initiating agent ia , of a candidate kα  includes a matrix of 

scores when kα  is multi-resource-based such that  

 

( ) ( ) ( ) ( )[ ]tryabilittryabilittryabilitteability Nkakakajka iiii
,,,,,,,, 21 αααα ′′′= � . 
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As a result, 

ik aPU ,α  can be further specified as { }
iNkikikik ararara PUPUPUPU ,,,,,,, ,,,

21 αααα �= .  In 

a homogeneous system where each agent is allocated and uses the same set of resources, all such 
sub-utility values will be non-zeros.  But in a heterogeneous where an agent may not have all the 
resources needed in { }NrrrR ,,, 21 �=τ , some of the sub-utility values will be zeros.  

 Now, the initiating agent needs to determine how much to ask for from each candidate for 
each resource.  Suppose we denote the amount of resource nr  to ask for from a candidate kα  as 

ik anr ,α  and the total amount of resource that the initiating agent ia  needs as a response to an 

event je  as � �
ij aenr , .  We have  

 ���
( )Λ∈

⋅=

jiinim

inm

ink

ijk

ea
ar

ar

aenn PU

PU
rr

,
,,

,,
,

α
α

α
α . 

 
Hence, we determine the amount of resource proportional to the potential utility of a candidate in 
its ability to provide that particular resource. 
 Since not all negotiations are guaranteed to be successful and not all coalition candidates 
approached by the initiating agent are guaranteed to join the coalition, once again, we can 
incorporate some insurance policies such as multiplying 

ik anr ,α  by a factor greater than 1.  This 

factor may be computed dynamically based on the importance of the event, the criticality of the 
resource and other issues, as stored in ( )τ=Κ

ietype .  Note that the resource assignments will be 

refined (increased or decreased) once the initiating agent starts to receive various accepted deals, 
reported from its negotiation threads.  We will discuss this further in Section 3.4.2. 
 The resource allocation and assignment algorithms are similar to the priority, bounded, 
greedy, and worried algorithms presented above for the task-driven and function-driven 
approaches. 
 
3.4. Coalition Finalization: Negotiation 
 
Agent-based negotiations involve information exchanges between two agents where the initiating 
agent desires to persuade the responding agent to accept a task.  Two agents need to exchange 
information as each has only a partial set of the information or knowledge contained in the entire 
multi-agent environment, especially where information cannot be updated and distributed 
quickly and accurately to all agents.  Thus, when an initiating agent encounters a task that it 
believes that another agent can perform, it negotiates by informing that agent of the description 
of the task and its own constraints.  In this way, each agent maintains a local information base 
and information is exchanged only when necessary.  In our model, we use a real-time case-based 
logical negotiation protocol to dictate the rules of encounter or the negotiation strategies between 
two agents.  Interested readers are referred to (Soh and Tsatsoulis 2001) for a detailed 
presentation of the logical protocol.  Some important work in negotiation can be found in 
(Durfee and Lesser 1991; Lâasri et al. 1992; Kraus et al. 1995; Zlotkin and Rosenschein 1996; 
Doran et al. 1997; Kraus 1997; Faratin et al. 1998; Kraus et al. 1998; Parsons et al. 1998).  
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Here we briefly describe our negotiation protocol.  An agent has a set of negotiation threads.  
When an agent needs to negotiate with one of its neighbors, it uploads the information necessary 
for the negotiation and activates one of its threads.  That negotiation thread downloads the 
information and then carries out its negotiation autonomously with the responding agent.  The 
negotiation is iterative.  The negotiation thread composes and sends out messages to the 
responding agent, and receives and parses the incoming messages from the responding agent.  At 
each step, the negotiation thread decides what to do next, following a negotiation strategy 
customized for itself by the parent agent.  Also, the negotiation thread checks its data cache to 
monitor its negotiation pace, to see whether the parent agent has additional instructions such as 
“Abort now”, “ increase your demand”, and so on.  During a negotiation, an initiating agent 
basically tries to convince a responding agent to perform a set of tasks or give up a certain set of 
resources.  To do so, it sends over arguments—information pertinent to its constraints, 
commitments, and perception.  The responding agent evaluates these arguments and updates its 
own view of the situation.  If the arguments are persuasive enough, then the responding agent 
agrees to the request.  The responding agent also has the ability to counter-offer, for example, 
when the initiating agent has exhausted all its arguments, or when the responding agent grows 
impatient and is about to quit the negotiation.   

Since our negotiation protocol is iterative, it facilitates interactions between negotiation 
threads.  An initiating agent can invoke a host of concurrent negotiations, one to each of its 

coalition members in ( )jiini ea ,Λ  bounded by ( )� �jiapproached ea ,Λ .  While the negotiation threads 

are actively engaged in their respective negotiations, the initiating agent continues to monitor its 
world, examine its tasks, communicate with other agents, and watch the status of its negotiation 
threads.  Since each of these threads knows how to negotiate on its own, all it needs from time to 
time is for the parent agent to update the agent’s current beliefs and intentions that might 
interrupt the negotiation or change the negotiation issues.  The parent agent thus is able to infuse 
a high-level of awareness in the negotiation threads, relax the negotiation issues (less demanding 
or more conceding, for example), and abort negotiations with diminishing returns.   

In the following subsections, our discussions focus on the facilities that the agent provides 
for its negotiation threads such that there are indirect inter-thread activities to achieve a real-time 
working coalition. 
 
3.4.1. Awareness 
 
Since the environment is dynamic, an ongoing negotiation may become useless.  For example, if 
the negotiation is part of a response to an event je  and je  becomes false, then the negotiation 

has to be terminated.  Since a negotiation thread handles the negotiation semi-autonomously, it 
must be aware of such a situation, and the parent agent has to provide such awareness.  This 
coalition awareness has several benefits.  First, it allows an agent to free up its negotiation 
threads, communication channels, and communication bandwidth for other negotiation tasks.  
Second, it allows an agent to immediately abandon failing coalition, re-assess its environments, 
and start another coalition formation.  Third, by terminating useless negotiations, an agent is able 
to base its reasoning on updated, more correct status profile. 
 A negotiation thread conducts its negotiation following a logical real-time protocol that spells 
out what it should do in each negotiation iteration, and a negotiation strategy that dictates how 
the thread should negotiate—how much time it has, how conceding it should be, what kind of 
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arguments it has, which arguments it should send first, and so on.  It also needs to know the 
context of the negotiation—the request, the amount of resource to give up, the counterpart agent, 
and so on.  When activated, a negotiation thread downloads the negotiation context and strategy 
from the parent agent.  Then, if the thread does not hear from the parent agent, it knows how to 
negotiate on its own and report back to the parent agent when the negotiation is completed.   
 The parent agent, on the other hand, carries out its normal tasks such as monitoring the 
world, actuating its sensors, and so on.  It holds a shared data object with each negotiation 
thread.  When the event changes or the current status of the coalition changes, the agent 
evaluates the current status of each negotiation thread and makes a decision as to whether to 
relax, to terminate, or refine the negotiation.  This decision together with its pertinent 
information is stored at that data object.  We call this shared data object the awareness link, or 

ziaAL β,  for the zβ  negotiation thread of agent ia , where ia  has X negotiation threads, 

{ }Xβββ ,,, 21 � .  Both the agent and the negotiation thread can store and access data on this 
awareness link.  With this design, the parent agent shoulders the task of feeding its negotiation 
threads additional instructions.  There are several reasons why we adopt this awareness link 
design in our model.  First, the environment is dynamic and real-time critical.  It does not make 
sense for each negotiation thread to setup its own sensors, monitors, and even decision makers to 
determine the current status of the agent and changes its negotiation behavior accordingly, since  
it would have to sieve through unrelated information and data and that would be time consuming.  
Second, it is natural for the agent to disperse the information to all its negotiation threads.  A 
negotiation thread does not know the status of a coalition (e.g., whether the coalition is failing or 
succeeding); only the agent knows that.  With that knowledge, an agent can decide whether to 
scale back on some of its negotiations, or make other modifications.  This way, the chain of 
command is direct and less confusing, and certainly less computationally intensive.  Third, with 
each negotiation thread having its own dedicated awareness link, the information or data passed 
through the parent agent and that particular thread does not interfere with the other threads.  This 
way, each negotiation thread can concentrate on the instructions specifically directed to it from 
the parent agent.   
 There are several issues one needs to address—the frequency of the updates and checks and 
the number of items to be updated and checked at each awareness link.  In a real-time system, an 
agent or a processing thread cannot afford constantly polling or checking for possible 
information before moving to the next step.  A parent agent should only update the awareness 
link when it has some significant changes to a particular negotiation thread and should only 
access the awareness (to check upon the status of the negotiation) only when it needs to make a 
decision based on that piece of information.  This is straightforward since both the updates and 
accesses are driven by events.  On the other hand, the negotiation thread needs to check its 
awareness link to see if its parent agent has something for the negotiation, and that is an 
asynchronous matter.  This frequency of checks depends on the degree of anytime-ness that the 
problem calls for.  If the design requires the negotiation thread to check at every step so that it 
can bail out as soon as possible to conserve, say, the communication channel usage, then the 
thread has to check the awareness link at every iteration.  The thread also may need to report 
back to its parent agent on its progress: Has the negotiation been going as planned? How far has 
it fallen behind? And so on.  The frequency of this type of updates depends on the resolution of 
the decision points of the parent agent.  The higher the resolution, the parent agent can have 
more complete data for its options while incurring more computational costs and delays. 
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 In our model, the parent agent checks the negotiation status of its negotiation threads within a 
framework of tasks.  It checks its messages, its sensors for events, tasks, and the negotiations, 
and then repeats.  This lifecycle varies in its duration, as the environment is dynamic and 
uncertain.  For the negotiation thread, we propose a gradated scheme based on percentage of 
time elapsed.  For example, a thread checks and updates its status (1) less frequently in the 
beginning, (2) more frequently towards the end, (3) less frequently when it is progressing 
according to plan, and (3) more frequently when it is failing.  This is because we assume that the 
event status is still relatively constant in the beginning of the negotiation and only changes after a 
certain time period has passed.  We also assume that when a negotiation is progressing well and 
succeeding, that negotiation thread should carry on and complete the negotiation unless some 
significant event occurs and calls it off.  In this manner, the agent does not lose the utility of such 
a negotiation and learns to be efficient.  We also assume that when a negotiation is not doing 
well, after reporting it to the parent agent, the negotiation thread can expect further instructions 
from the parent agent, hence the increase in its access of the awareness link. 
 
3.4.2. Relaxation and Termination 
 
Each agent is responsible for the coordination among its negotiation threads as the negotiation 
threads do not talk to each other directly.  The agent monitors the status of the negotiations and 
makes decisions.  Two of the decisions it can make are relaxation and termination.  From the 
initiating agent standpoint, this relaxation results in a smaller demand; from the responding agent 
standpoint, this relaxation results in a more yielding stance.  Since this paper’s focus is in 
coalition formation, we will discuss relaxation and termination from the viewpoint of an 
initiating agent.   
 As previously mentioned in Section 3.3, in a task-driven or function-driven approach, a 
parent agent may intentionally negotiate with additional neighbors as an insurance policy.  
Similarly, in a resource-driven approach, a parent agent may intentionally increase its request for 
a certain resource two-fold to increase the chance of getting what it actually needs.  As the 
individual threads start to report in one by one, the agent may realize that it no longer needs 
those insurance policies anymore.  Similarly, the event that the agent has planned its negotiations 
for may have changed for the better, or the agent itself has completed other computational 
intensive tasks and just freed up some much-needed resources.  These changes also cause the 
agent to relax or terminate its active negotiations. 
 Here we have several heuristics on the relaxation.  Suppose in a 1-to-1 task allocation 

problem, we have ( ) τFea jiapproached >Λ , .  That is, the number of candidates that the agent ia  

approaches is greater than the number of tasks required to respond to the event je .  At time t, ia  

activates all its negotiation threads, each with a partial-assignment ρραρ f,= .  At time ∆+t , 

some changes have been detected (in the agent status, in the event, or in the negotiation status), 
such that τF  is now τF ′ .  If ττ FF ⊄′ , then the agent needs to (1) immediately terminate all 

negotiation threads with ρραρ f,=  where τρ Ff ′∉ , and (2) label this change as a new event 

and proceed from there accordingly.  If ττ FF ⊂′ , then the agent uses the following algorithm: 
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Algorithm 1-to-1 Relaxation and Termination: (1) for all ongoing negotiations with 

ρραρ f,=  where τρ Ff ′∉  do: (1.1) check to see whether an additional agent 

performing the same task or an unnecessary task can improve the quality of the solution 
or benefit the environment and denote this as ( )tfbenefit

ia ,, ρρα ,  (1.2) check the current 

status of the negotiation and denote this as ( )tfprogress
x

,, ρρβ α  for negotiation thread 

xβ , (1.3) compute the expected utility of continuing with this negotiation:  

 

( ) ( ) ( )
2

,,,,
,,

,, tfbenefittfprogressPU
tfEU ixi

x

aaf ρρρρβα
ρρβ

αα
α ρρ

⋅+
= , 

 
(1.4) if ( )tfEU

x
,, ρρβ α  is greater than what the agent can afford to spend in resources, 

then the agent continues in the negotiation; otherwise, it terminates the negotiation.   
 

In a many-to-1 task allocation problem, we have a higher level of flexibility.  Suppose that the 

negotiation thread in question has { }
21

,, ρρραρ ff= .  Then, the agent can compute 

( )tfbenefit
ia ,,

1ρρα  and ( )tfbenefit
ia ,,

2ρρα  (assuming disjoint tasks).  It then can decide to drop 

1ρf or 
2ρf  from its original demand or keep both.  The algorithm becomes: 

 
Algorithm Many-to-1 Relaxation and Termination: (1) for all ongoing negotiations with 

ρραρ f,=  where ρρ ff
s
∈  and τρ Ff

s
′∉  do: (1.1) compute ( )tfbenefit

sia ,, ρρα  for all 

ρρ ff
s
∈  and τρ Ff

s
′∉ , (1.2) check the current status of the negotiation and denote this as 

( )tfprogress
x

,, ρρβ α  for negotiation thread xβ , (1.3) compute the expected utility of 

continuing with this negotiation for all ρρ ff
s
∈  and τρ Ff

s
′∉ :  

 

( ) ( ) ( )
2

,,,,
,,

,, tfbenefittfprogressPU
tfEU sixis

sx

aaf ρρρρβα
ρρβ

αα
α ρρ

⋅+
= , 

 
(1.4) if ( )tfEU

sx
,, ρρβ α  is greater than what the agent can afford to spend in resources, 

then the agent retains 
s

fρ  in the negotiation; otherwise, it drops 
s

fρ  from the negotiation.   

 
The expected utility is basically the potential utility of the coalition member to the original event 
response plus the utility of continuing with the negotiation.  The latter utility says that if the 
negotiation is progressing well and the eventual outcome will benefit the environment, then the 
agent should not waste the ongoing effort and should continue with the negotiation.  However, in 
step (1.4) above, the agent is also rational: it continues only when it is affordable to do so.  If the 
agent has other tasks to do, has to divert its computational resources to other areas, or has to 
come up with free negotiation threads for other events, then the continuation becomes costly and 
counter-productive. 
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 Similarly, in a resource-driven approach, we have τR , τR′ , ρραρ r,= , and 

{ }
iNkikikik ararara PUPUPUPU ,,,,,,, ,,,

21 αααα �= .  Hence, we may use the same algorithms for 

relaxation and termination of negotiations in a resource-allocation problem.  
 The relaxation and termination behavior is both rational and altruistic.  An agent should not 
be conducting negotiations that use its resources when those negotiations become useless.  
Neither should an agent impose or transfer that cost to its responding agent by insisting on 
useless negotiations.  The responding agent would have to entertain the negotiation without 
knowing that the negotiation has become useless, and would have to perform the request had the 
negotiation reached a successful conclusion.  Also, this behavior enables the initiating agent to 
be bold and aggressive in its coalition initialization (Section 3.3).  Without this relaxation and 
termination capability, the initiating agent would have to be more careful in its initialization 
since it has less room for errors.  That would mean for the initiating agent to collect more 
information in its rationalization which would in turn decrease the autonomy and robustness of 
the multiagent system.  So, the coupling of the initialization and relaxation/termination is very 
important in our dynamic, negotiation-based coalition formation model.   
 Finally, at the end of all negotiations, we have the final coalition ( )jifinal ea ,Λ  and 

( ) ( ) ( )jiinijiapproachedjifinal eaeaea ,,, Λ⊆Λ⊆Λ . 

 
3.5. Chain Reaction  
 
In our model, the multiagent system can also help guarantee a successful group of coalitions.  
Since each agent is autonomous, a partially successful coalition from an agent to its neighbor can 
lead to the neighbor detecting an event and forming another coalition to help respond to the 
event.  Moreover, the propagation of constraints, commitments, and perceptions from an agent to 
another is possible via negotiations.  As a result, the first initiating agent can create a chain 
reaction throughout the multiagent system across various neighborhoods resulting in multiple 
overlapping coalitions.  This self-organizing behavior allows the coalition formation process to 
be more reactive and less rational, which is advantageous in a multiagent system of incomplete 
information.   
 To alleviate the impact of a coalition failure, our agent behavior design resembles a natural 
mitigation approach.  Our agent constantly monitors its environments.  So, when a coalition fails, 
the agent continues to monitor and if it finds the same problem still present, it can start another 
round of coalition formation.  Since our agents are reflective and situation-aware, this new 
coalition will have a different problem profile, neighborhood profile, and agent profile.  This in 
effect allows the agent to look at the problem from a slightly different viewpoint, which may 
eventually lead to a successful coalition being formed.  The rate of such a recovery (the number 
of coalition failures before success) is critically dependent on the dynamism of the problem.   

This mitigation approach belies the principles of our coalition formation approach: the agents 
are willing to fail many times before getting it right because of the dynamism of the system that 
does not allow the agents to rationalize optimally an does not allow the agents to guarantee the 
successful formation of an optimal coalition. 

 
3.6. Multiple Coalitions and Inter-Coalition Behavior 
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If an agent ia  detects E simultaneous events, then it will have E possible initial coalitions, 

( ) ( ) ( ) ( ){ }Eiiniiiniiiniiini eaeaeaEa ,,,,,,, 21 ΛΛΛ=Λ �

��

.  Since negotiation is time consuming and 

resource taxing, the agent ia  cannot afford finalizing every coalition to find out the utilities of 

the finalized coalitions.  Thus, we use the potential utilities: 
jik eaPU ,,α .  This is also where 

domain-specific heuristics may come into play.  For example, if each event type is prioritized, 
then we will want the initiating agent to handle the top-priority event and thus its corresponding 
coalition.  In our model, since an agent cannot possibly handle all coalition formations at once 
due to limited resources, it invokes coalition formation in a first-come first-serve manner.  Since 
the agent monitors its environment and its own status, if the event that has lost out still persists, 
then the agent can launch another coalition formation process at a later time.  This is how our 
model handles a series of events. 
 In our model, an agent can have multiple working coalitions concurrently as long as parts 
that the agent play in the multiple coalitions are not conflicting in goals and do not use the same 
resources at the same time.  Since multiple coalitions can concurrently occur, they may affect 
each other’s immediate environment.  Thus there are intra-coalition behaviors via the actuation 
of the agents that affect the environment and the sensing of the changes.  In addition, suppose an 
agent has one working coalition, and is now forming a second coalition.  Since being a part of a 
working coalition indicates a set of commitments, constraints, and perceptions, the agent 
invariably considers those when it is trying to form the second coalition.  For example, if the 
agent is executing a task that requires a large portion of its allocated CPU resource, then it will 
have less resource for the coalition formation, and it will require more help from its coalition 
candidates for its second coalition.  This is how a coalition interacts with another.    
 
4. An Implementation and Discussions 
 
The driving application for our system is multisensor target tracking, a distributed resource 
allocation and constraint satisfaction problem.  The objective is to track as many targets as 
possible and as accurately as possible using a network of sensors.  Each sensor has a set of 
consumable resources, such as beam-seconds (the amount of time a sensor is active), battery 
power, and communication channels, which each sensor desires to utilize efficiently.  Each 
sensor is at a fixed physical location and, as a target passes through its coverage area, it has to 
collaborate with neighboring sensors to triangulate their measurements to obtain an accurate 
estimate of the position and velocity of the target.  As more targets appear in the environment, 
the sensors need to decide which ones to track, when to track them, and when not to track them, 
always being aware of the status and usage of sensor resources. 
 The problem is further complicated by the real-time constraints of the environment and the 
fact that agents have to share physical resources such as communication channels and disk 
storage.  For example, for a target moving at 0.5 foot per second, accurate tracking requires one 
measurement each from at least three different sensors within a time interval of less than 2 
seconds.  The real-time constraints force our agents to deal with issues such as CPU allocation 
(since speed of execution depends on it), disk space allocation, communication latency, and 
processing times.  Finally, the environment is noisy and subject to uncertainty and error: 
messages may be lost, a sensor may fail to operate, or a communication channel could be 
jammed.  Thus, in addition to improving autonomy, one is required to promote noise-resistance 
in agent reasoning, sensor control, and communications. 
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 The sensors are 9.35 GHz Doppler MTI radars that communicate using a 900 MHz wireless, 
radio-frequency (RF) transmitter with a total of eight available channels.  Each sensor can at any 
time scan one of three sectors, each covering a 120-degree swath.  Sensors are connected to a 
network of CPU platforms on which the agents controlling each sensor reside.  The agents (and 
sensors) must communicate over the eight-channel RF link, leading to potential channel jamming 
and lost messages.  Finally, there is software (the “ tracker”) that, given a set of radar 
measurements, produces a possible location and velocity for a target; the accuracy of the location 
and velocity estimates depend on the quality and frequency of the radar measurements: as we 
mentioned, the target must be sensed by at least three radars within a two second interval for 
accurate tracking. 
 Our agent architecture is as follows.  Each agent has 3+B threads.  It has a core main thread 
that does the decision making, manages the tasks, performs coalition formation, and oversees the 
negotiations.  It has a communication thread that interacts with the message send/receive system 
of the radar (or the simulated software) to poll for incoming messages and to physically send out 
messages.  It has an execution thread that actuates the physical sensor: calibration, search-and-
detect for a target, turn on/off a sensing sector, change the orientation of the sensor, and measure 
a target’s return signals.  It then has B negotiation threads.  Each thread is dormant until 
activated.  When it is activated, it downloads pertinent information form the parent agent and 
proceeds with its negotiation—either as an initiating agent or a responding agent, depending on 
the information from the parent agent through its dedicated awareness link. 
 We have implemented part of our dynamic, negotiation-based coalition formation model in 
our multisensor target tracking system and plan to implement the entire model as we include 
more complicated tasks and events into our system.  Currently, all agents are homogeneous and 
autonomous.  Each is capable of sensing its environment, reacting to it, making decisions on 
coalitions, negotiating with its neighbors, and performing tasks that affect the environment.  
Currently, we have implemented two types of events: an incoming target and a CPU shortage 
crisis.   
 
4.1. Multisensor Target Tracking 
  
When an agent detects a target in its sensing sector, it first obtains its estimated velocity and 
position from a tracker software module.  Equipped with these estimates, it is able to generate 

( )t
iaF ,τ

Ψ  based on a geometric model of the orientations of the neighbors’  sensors and their 

locations.  Given this list, the agent is able to obtain ( ) ( )
ii aaFjiini tea η

τ
∩Ψ=Λ ,, .  Subsequently, 

the agent ranks the candidates based on their potential utility following evaluation scheme 
outlined in Section 3.3.2.  Since the standard response to target tracking is to turn on a specific 
sensing sector and measure, 1=τF .  So, we use the priority 1 and use the Algorithm Priority-

Based 1-To-1 Bounded to allocate the tasks and use the number of available negotiation threads 

as ( )jiapproached ea ,Λ .  The initiating agent then activates its negotiation threads with the 

corresponding assignments.  The negotiation threads conduct their negotiations.  Since we have 
only one target in the environment, the initiating agent does not have the opportunity to perform 
relaxation and termination.  As a result, each negotiation thread currently only monitors its own 
progress and if it is running out of time, it counter-offers to speed up the negotiation, and if it has 
run out of time, it aborts the negotiation and reports back to its parent agent.  The parent agent 
then downloads the information from the completed negotiation thread and carries out the deal 
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reached—scheduling the deal in its job queue, allocating CPU resource in anticipation of the 
task, and performing the agreed task.  One of the domain-specific criteria used in determining 

( )teability jkai
,,α  for the candidates is either the time of arrival of the target into the sensing 

sector of the candidate or the time of departure of the target from the sensing sector of the 
candidate.  Candidates that have less time will have a higher ability as they need to be 
approached soon before the target leaves those sensing coverage areas. 
 We have tested our multiagent system in a physical hardware setup and in a software 
simulation.  Here are some experimental setup parameters.  There are four agents.  Each agent 
controls a radar.  The radars are fixated at four corners of a 20x20 feet square.  A target moving 
at 0.5 ft/sec moves in a route (rectangular, diagonal, or circular).  Figure 1 shows a graphical 
representation of our simulation.  

 

 
Figure 1  The graphical representation of the environment that our agents operate.  S1-S4 are four 

sensors, each controlled by an agent.  M2r is the ground truth of the target. M2t is the estimated target 
position.  Each sensor has three sensing sectors. 

 
Table 1 shows the best mean square error (MSE) in feet of our tracking in a noiseless 
environment. 
 

Error Dx (feet) Dy (feet) MSE (feet) 
Rectangular Route 1.76 0.80 2.00 
Diagonal Route 1.32 1.50 2.29 
Circular Route 1.22 1.51 2.22 

 
Table 1  The best tracking errors of the target travelling in different routes. 
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Figures 2-4 show some of the better track results for the rectangular, diagonal, and circular 
routes, respectively. 
 

 
Figure 2  Rectangular route: Dx = 1.76, Dy = 0.80, MSE = 2.00.  The blue track is the ground truth and 

the magenta points are the estimated points by the multiagent system. 
 

 
Figure 3  Diagonal route: Dx = 2.36, Dy = 1.94, and MSE = 3.12. The blue track is the ground truth 

and the magenta points are the estimated points by the multiagent system. 
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Figure 4  Circular route: Dx = 1.73, Dy = 1.62, and MSE = 2.59.  Excluding the first two and the last 

nine bad points, we have: Dx = 1.65, Dy = 1.58, and MSE = 2.49. The blue track is the ground truth and 
the magenta points are the estimated points by the multiagent system. 

 
4.2. CPU Resource Allocation 
  
We have implemented a Real-Time Scheduling Service (RTSS) in ‘C’ , on top of the KU Real-
Time system (KURT) (Srinivasan et al. 1998) that adds real-time functionality to Linux.  First, 
the RTSS provides an interface between the agents and the system timers, allowing agents to: (1) 
query the operating system about the current time; (2) ask the RTSS to notify them after the 
passage of certain length of time; and (3) ask the RTSS to ping them at fixed time intervals.  This 
allows agents to know when to, for example, conclude a negotiation process or turn on a radar 
sector.  Second, the agents may ask the RTSS to notify them when certain system-level events 
occur, such as process threads being activated, or communication messages going out or coming 
into the system.  Third, the agents can ask the RTSS to allocate them a percentage of the CPU for 
each one of their threads (such as the ones controlling the radar and tracking or the ones used in 
negotiations) and to schedule this allocation within an interval of time.  This RTSS allows an 
agent to monitor the progress of its own negotiations and the usage status of its allocated CPU 
resource.   
 Currently, a CPU shortage is detected whenever an agent is using 90% of its allocated CPU.  
When this happens, it first requests for more CPU allocation from the RTSS.  If the RTSS has 
the CPU available, it will grant it.  If the RTSS can only grant partially or grant none of the 
request, then the agent faces a crisis and declares a new CPU shortage event.  When this occurs, 
it retrieves ( )t

iar ,τ
Ψ  from the RTSS, where r is CPU allocation, and τ  is CPU shortage.  This 

initiating agent then evaluates potential utility, 
ik aPU ,α  of each candidate and then determines 
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ij aer ,  is the additional CPU allocation that the agent wants, and the number 2 is the factor used 

as an insurance policy.  After the resource allocation and assignment, the initiating agent uses the 
Algorithm Greedy Priority-Based 1-To-1 Bounded (Section 3.3.3) to determine ( )jiapproached ea ,Λ .  

It then negotiates with the candidates in ( )jiapproached ea ,Λ  to form the final coalition.  If there is 

an agreement, the initiating agent shoulders the task of resource allocation with the RTSS.  It 
informs the RTSS that its particular neighbor has agreed to give up a certain amount of CPU 
allocation to the agent.  That particular neighbor obtains its updated CPU allocation from the 
RTSS and subsequently re-organizes its CPU distribution among its processing threads.   
 Currently, we are running experiments to collect data on this agent-driven CPU resource 
allocation to measure its effectiveness and how it cooperates with an operating-system-level 
scheduling service (i.e., the RTSS) to achieve a high-level job queuing of low-level tasks.   
 
4.3. Case-Based Learning 
 
There is another feature that we have not touched upon concerning our negotiation protocol.  Our 
negotiation strategy is derived through case-based reasoning (CBR).  So, our agents actually 
learn good cases of negotiations and store them in their casebases.  As an agent evolves, it 
becomes more adaptive to its environments and learns more useful negotiation strategies.  These 
strategies will help generate more efficient and effective negotiation behavior, which in turn 
improve the overall coalition formation process.  Interested readers are referred to (Soh and 
Tsatsoulis 2001) for a detailed discussion of our case-based reasoning mechanism. 
 Briefly, when an event occurs, the initiating agent collects its current status and the profile of 
the event to build a problem space.  With this problem space, the initiating agent searches the 
case base to retrieve the most similar case.  From that case, the initiating agent obtains a 
parametric negotiation strategy that has been used before as a solution to a problem similar to the 
current one.  The initiating agent then adapts the strategy according to the differences between 
the current problem and the old one.  The new strategy is then dynamically stored at each 
awareness link for its associated negotiation thread to use. 
 After a negotiation completes, the parent agent collects the information and obtains the 
outcome to generate a new case with the problem space, the adapted negotiation strategy as the 
solution space and the negotiation outcome as the outcome space.  It then computes the 
difference between this new case and the casebase.  If the inclusion of this new case increases the 
diversity in either the problem or the solution space, then the case is learned.  In this way, the 
casebase evolves to cover wide problem and solution spaces.  In the end, this will help agents 
negotiate more confidently and successfully, ultimately resulting in a better and faster coalition 
formation process. 
 
4.4. Learning Results 
 
We ran two basic experiments:  In the first one we investigated the effect of potential-utility-
based evaluation in the quality of the resulting coalition, and in the second one we looked into 
the quality of the negotiation as a function of learning new cases of negotiation strategies.  The 
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quality was based in the number of successful negotiations, since when the agents reach a 
negotiated deal to jointly track a target, the overall system utility increases.  Initial results 
indicate that the agents form coalitions with partners who are more willing to accommodate them 
in negotiation, and that the cases learned are being used in future negotiations.  Agents that use 
learning of negotiation cases have between 40% and 20% fewer failed negotiations.  Agents that 
use the utility-driven approach (Section 3.3.2) to determine future coalition partners tend to 
prefer neighbors who are more conceding.  Note that the utility-driven approach is a form of 
reinforcement learning.   
 In the second experiments, we investigated four versions of learning: (1) both case-based 
learning and reinforcement learning (CBLRL), (2) only reinforcement learning (NoCBL), (3) 
only case-based learning (NoRL), and (4) no learning at all (NoCBLRL).  Figure 5 shows the 
result in terms of the success rates for negotiations and coalition formations.  As can be observed 
from the graph, the agent design with both case-based learning and reinforcement learning 
outperformed others in both its negotiation success rate and coalition formation success rate.  
That means with learning, the agents were able to negotiate more effectively (and perhaps more 
efficiently as well) that led to more coalitions formed.  Without either case-based learning or 
reinforcement learning (but not both), the negotiation success rates remained about the same but 
the coalition formation rate tended to deteriorate.  This indicates that without one of the learning 
mechanisms, the agents were still able to negotiate effectively, but may be not efficiently 
(resulting in less processing time for the initiating agent to post-process an agreement).  Without 
both learning mechanisms, there was significant drop in the negotiation success rate.  Therefore, 
we conclude that our utility-driven ranking of coalition candidates improves our coalition 
formation process. 

Figure 5  Success rates of negotiations and coalition formations for different learning mechanisms. 
 
4.5.  System-Related Experiments 
 
Here we report on some preliminary experiment results for the behavior analsyis of our 
multiagent system, specifically for multisensor target tracking.  We consider here an exemplary 

0

5

10

15

20

25

30

35

40

45

50

C
B

LR
L

N
oR

L

N
oC

B
L

N
oC

B
LR

L

Various Learning Mechanisms

S
u

cc
es

s 
R

at
e 

(%
)

Negotiation

Coalition Formed



30 

run that we used to adjust our system parameters.  In this run, the total number of attempts to 
form a coalition was 150.  The total number of coalitions successfully formed (after coalition 
finalization) was 30, or 20%.  The total number of coalitions confirmed by all three coalition 
members was 26, or 86.7% of all successfully formed coalitions.  Finally, the total number of 
coalitions executed on time was 18, or 61.5% out of all successfully confirmed coalitions.   

First, the percentage of successfully formed coalitions was only 20.0%.  Out of the 120 failed 
attempts, 86 (71.7%) of them were caused by one of the coalition members outright refusing to 
negotiate, 17 (14.2%) were caused by the communication channels being jammed, and 17 
(14.2%) were caused by busy negotiation threads.  When an initiating agent initiates a 
negotiation request to a candidate and that candidate immediately refuses to entertain the 
negotiation, it can be due to (1) the responding agent does not have idle negotiation threads, or 
(2) the responding agent cannot project the requested task into its job queue.  Thus, we expect 
this failure rate to decrease once we increase the number of negotiation threads allocated per 
agent.  When an agent fails to send a message to another agent, or fails to receive an expected 
message, we label this as a communication “channel-jammed” problem.  When an initiating 
agent fails to approach at least two candidates, it immediately aborts the other negotiation 
process that it has invoked for the same coalition.  This causes the coalition to fail. 

Second, the probability of a successfully formed coalition getting confirmed completely was 
86.7%.  For each coalition successfully formed, three confirmations were required.  Out of 30 
coalitions, 4 coalitions were confirmed only by two of the members.  The causes were (1) the 
acknowledgment message sent out by the initiating agent was never received by the responding 
agent expecting a confirmation, and (2) the agreed task had been removed from the job queue 
before the confirmation arrived.  The first cause happened since communication channels could 
be jammed.  The second cause happened because of a contention for a slot in the job queue by 
two tasks.  For example, suppose agent A receives a request from agent B to track a target 
starting at 8:00 a.m.  Agent A responds to the request and starts a negotiation.  Then later on, 
agent A receives a request from agent C to track a target also starting at 8:00 a.m., but using a 
different sensing sector (each sensor has three difference sensing sectors).  Agent A checks its 
job queue and sees that it is free at that time and thus agrees to negotiate.  Note that a task is 
inserted into the job queue only after the agent agrees to perform it.  Now, suppose that both 
negotiations are successful.  The negotiation between A and B ends first and then that between A 
and C.  When the first negotiation ends, agent A adds the task requested by B to the job queue.  
Immediately after, when the second negotiation also ends successfully, agent A adds the second 
task, requested by C to the job queue, and this causes the second task to replace the first task.  
This is a problem with over-commitment. 

Third, the probability of a confirmed coalition getting executed was 61.5%.  Out of 26 
coalitions confirmed, only 16 of them were executed completely.  Of the 10 failures, there were 
two cases where none of the members executed its planned task; one case where only one of the 
members executed; and seven cases where only two members executed.  The cause for the 
failure to execute was that the agreed task had been removed from the job queue before the 
execution took place. 

The above experiments allow us to test our coalition formation model in a real-time dynamic 
environment and devise problem-specific heuristics to improve the coalition formation 
performance. 
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5. Related Work 
 
A definition from the rational coalition theory outlined in (Kahan and Rapoport 1984) states that 
a coalition game with transferable utility in normal characteristic form is ),( vN where N = { 1, 2, 

…, n}  set of agents, and ℜ→Nv 2: .  For each coalition that is a subset of agents NS ⊆ , ( )Sv  
is the value of the coalition S, which is the total utility that the members of S can achieve by 
coordinating and acting together.   However, in our problem domain, the agents do not have the 
information they need to compute the value of the coalition.  Furthermore, our problem domain 
is not superadditive in which a merged coalition of any pair of sub-coalitions is better than any 
pair of sub-coalitions operating individually.  Superadditivity does not apply when coalition 
formation costs (such as communication and computation costs) are considered.  On the other 
hand, our model does not adhere to subadditive games either.  In a subadditive game, the agents 
are best off by operating alone since any coalition is worse than its individual members in terms 
of utility.  As previously mentioned in Section 2, in resource allocation, task distribution, or 
collaboration problem domains that our model is designed to address, subadditivity does not 
apply.  Most research work in coalition formation studies characteristic function games (CFGs) 
(Tohmé and Sandholm 1999) in which the value of each coalition is independent of 
nonmembers’  actions.  In our model, the value of a coalition is not independent of nonmembers’  
actions since dynamic activities—for example, shared resource usage, conflicting goals, 
modifications of the environment, etc.—exerted by agents in the environment are monitored and 
factored into the coalition design process.  However, our evaluation or scoring of a coalition does 
not explicitly consider nonmembers’  actions and that is akin to the characteristic function game 
theory.  
 Sandholm and Lesser (1995) introduce a bounded rationality in which agents are guided by 
performance profiles and computation costs in their coalition formation process.  In traditional 
coalition formation, a rational agent can solve the combinatorial problem optimally without 
paying a penalty for deliberation.  The authors’  bounded rationality model requires each agent to 
pay for computational resources that it uses for deliberation.  Each agent knows the value 
(computation cost) of each potential coalition S upfront as shared deterministic performance 
profiles are known.  In our model, an agent holds performance profiles (including time and CPU 
costs) for its execution.  It devises its coalition design based on the performance profiles not for 
optimization but for framing the coalition—identifying neighboring agents that can help.  Our 
model is also affected by the current status of an agent, such as the availability of negotiation 
threads, and the environment, such as the availability of the communication channel.  These 
factors are included in our model when computing the expected utility of a neighbor but do not 
guarantee success and are definitely not deterministic and not shared.   
 Zlotkin and Rosenschein (1994) describe a coalition driven by task-oriented utilities.  In a 
task-oriented domain (TOD), a coalition can coordinate by redistributing their tasks among 
themselves.   In a subadditive TOD, the way to minimize total cost is to aggregate as many tasks 
as possible into one execution batch (since the cost of the union of tasks is always less than the 
sum of the costs).  Therefore, the maximum utility that a group can derive in a subadditive TOD 
is the difference between the sum of stand-alone costs and the cost of the overall union of tasks.  
This difference is then defined to be the value of the coalition.  In a superadditive TOD, on the 
other hand, two disjoint coalitions can derive a utility at least the sum of their separate utilities.   
To facilitate the coalition formation process, agents are guided with the following rules of 
interaction.  First, assuming the coalition game is superadditive, the sum of utilities of the agents 
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should be equal to ( )Nv  where N is the total number of agents in the coalition.  This motivates 
the agents to be efficient such that there should be no wasted utility when an agreement is 
reached.  Second, there are three levels of stability (or rationality) conditions: individual, group, 
and coalition.  Individual rationality means that that no agent would like to opt out of the full 
coalition; i.e., utility of each in a coalition is at least the utility value of the agent by itself 
(forming a group).  Group rationality (or pareto-optimality) means that the group as a whole 
would not prefer any other payoff vector over the vector of individual utilities u� ; i.e., 

( )Nvu
N

i i =
=1

.  Coalition rationality means that no group of agents should have an incentive to 

deviate from the full coalition and create a sub-coalition, i.e., for each subset of agents NS ⊆ , 

( )Svu
Si i ≥

∈
.  Third, two agents are symmetric when they contribute the same value to all 

possible coalitions and should be assigned the same utility by the evaluation mechanism.  In our 
dynamic negotiation-based model, an agent can be of two or more coalitions simultaneously as 
each agent is autonomous and capable of reacting to separate events.  Some of these events, even 
though do not occur concurrently, call for responses that overlap in time.  On the other hand, the 
agents are motivated by a global directive (to cooperate to achieve global goals while optimizing 
local resources) and this allows each agent to achieve individual rationality and event-dependent 
group and coalition rationality.   
 Shehory et al. (1997) relax some of the restrictive assumptions of theoretical coalition 
formation algorithms for a real-world system.  In their model, each agent has a vector of real 
non-negative capabilities.  Each capability is a property of an agent that quantifies its ability to 
perform a specific type of action and is associated with an evaluation function.  A vector of 
capabilities satisfying a task is computed to obtain the benefits gained from performing the task, 
and the benefits are measured from the system viewpoint and that motivates the design and 
selection of a coalition.  The model assumes that the agents are group-rational and the agent 
population does not change during the coalition formation.  There are several differences 
between this model and ours.  First, the authors’  model assumes that all agents know about all of 
the tasks and the other agents.  In our model, an initiating agent knows only the agents in its 
neighborhood and knows about partially the updated status of a selective subset of the neighbors 
after negotiation.  Second, the details of intra-coalitional activity are not necessary for agents 
outside of the coalition in the authors’  model.  On the contrary, in our model, an agent can and 
does belong to multiple coalitions concurrently.  When an agent belongs to a coalition, it 
performs a task contributing to that coalition and this execution of task is reflected in the agent’s 
commitments, constraints, and perceptions—for example, its usage of resources is affected, it has 
constraints on the type of services it can provide, and it has an updated viewpoint of the world 
including its neighbors.  These factors are significant in the agent’s handling of the next 
coalition.  In a way, therefore, intra-coalitional activities are indirectly felt among agents of 
different coalitions in our model.  Third, there is no clock synchronization among the agents in 
the authors’  model.  Since our problem domain is time-critical and our agents negotiate with 
time, there is a facility in our design that provides a synchronized clock across different 
computing platforms.  Fourth, in the authors’  model, all possible coalitions are calculated in a 
distributed manner.  The distribution of the calculations is done by having each agent 
approaching the members of the coalition in the list of coalitions (preliminarily derived) and 
committing to the calculation of the values of coalitions in which they are both members.  In our 
model, a coalition is dynamically designed and evaluated by the initiating agent.  The responding 
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agents in the coalition are implicitly motivated by a global directive to help and explicitly driven 
by their objectives to optimize their local utilities.  
 Shehory and Kraus (1998) further extend their work to incorporating negotiations, 
computational and communication costs.  The initial state of a coalition consists of a set of 
agents.  The agent then begin negotiating and gradually form the coalition.  Agents that join the 
coalition quit the coalition-formation process and only the remaining agents continue to 
negotiate.  The reduction in the number of agents that continue negotiating reduces the 
computational and communication costs.  This model is similar to ours in its reduction of 
computational and communication costs.  However, our model allows an agent to conduct 1-to-N 
coalition candidates and adjust its negotiation strategies to re-design its coalition as its 
commitments, constraints, and perceptions change.  Hence, the resulting coalition can be very 
different from the initial coalition.   
 Tohmé and Sandholm (1999) studies coalition formation among self-interested agents that 
cannot make sidepayments—reward each other with payments for agreement to join some 
coalition, making the evaluation of a coalition solely on its utility.  The authors also consider 
deliberation and communication costs.  When explicitly modeling these costs, the authors use a 
greedy algorithm that stepwise maximizes the expected payoff of an action given its beliefs.  
Subsequently, the beliefs such as conditional probabilities of the costs and actions will be revised 
before the next action and this allows an agent to determine the expected payoff of a sequence of 
actions within a coalition, giving the agents in the member a metric to converge to.  To 
rationalize about the utility of a coalition, the agents within the coalition assume that other non-
member agents pick strategies that are worst for the coalition following the � -assumption.  The 
resulting � -core solution is Pareto-optimal, i.e., an individual utility cannot be improved without 
diminishing the utility of another agent, in a perfect information scenario.   The authors further 
show that when agents agree to a process that is in the � -core solution, the greedy algorithm 
leads to convergence of the agents’  beliefs in a finite number of steps.  The authors finally show 
that the outcome of any communication/deliberation process that leads to a stable coalition 
structure is Pareto-optimal for the original game that does not incorporate communication or 
deliberation.  Conversely, any Pareto-optimal outcome can be supported by a 
communication/deliberation process that leads to a stable coalition structure.  Our model is very 
similar to what the authors describe.  During a negotiation between, the two agents exchange 
information on constraints, commitments, and perceptions, allowing each other to update their 
beliefs about each other.  This allows a compromised deal to be reached (or where beliefs 
converge) if possible.  However, in our model, we do not guarantee a convergence or a stable 
solution to our negotiations.  There are external factors such as the dynamic events and noisy 
communication channels that may thwart the successful completion of a negotiation, rendering a 
negotiation outcome unpredictable.  In addition, in our coalition formation model, the 
responsibility for organizing a coalition lies with the initiating agent.  The other candidates of the 
coalition simply decide whether it is rational to join the coalition when recruited.  A candidate 
makes its decision based on the arguments provided by the initiating agent, its current status, and 
its previous experience in the matter.  Moreover, the initiating agent does not assume non-
member agents pick strategies that are worst for its coalition.  Without perfect information, each 
initiating agent tries to build the best coalition given time and resources.  When the next event 
comes in, another initiating agent tries to build the best coalition it can given time and resources 
that the coalition has after a partial set of its members having committed to previous coalitions.   
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 Sen and Dutta (2000) propose an order-based genetic algorithm (OBGA) as a stochastic 
search process to identify the optimal coalition structure.  Though the OBGA has no 
performance guarantees (neither does our model), it is found to dominate the deterministic 
algorithm in a significant number of problem settings.  It is also scaleable and applicable to 
problems where performance of a coalition depends on other coalitions in the environment.  The 
design of OBGA has a distinct advantage over traditional coalition formation algorithms on the 
combinatorial problems.  Traditional algorithms exhaustively and exponentially search the space 
of all possible coalition structures while the OBGA is linear to the number of agents in the 
system.  A significant difference between the authors’  work and our model is the scope of 
coalition formation.  The authors’  algorithm is for searching for an optimal coalition structure, 
which consists of all the agents in the environment grouped into one or more coalitions.  Our 
model, however, focuses on the formation of a single coalition for a particular event while 
allowing multiple coalitions to be formed concurrently.  Our model also allows intra-coalition 
issues to be factored into the coalition formation process, but does not take into account 
optimizing coalitions in a coalition structure concurrently. 
 Ketchpel (1994) presents a coalition formation method for rational agents that have different 
expectations of coalition values and have perfect information but lack the ability to deduce 
perfectly.  Klusch and Shehory (1996) present an approach for cooperation and coalition 
formation among information agents for heterogeneous databases.  They propose a special 
decentralized coalition formation mechanism to address the required association autonomy of 
these information agents.  The coalition formation in this case requires finding partitions of the 
agents with respect to their utilities.  These utilities are calculated and result from the execution 
of either the agents’  own search tasks or tasks that they receive from other information agents.  If 
the agents are rational, then such partitions, or coalitions, will form if and only if each member of 
a coalition will gain more if its joins the coalition than it could gain by itself previously.  This is 
akin to the group rationality or pareto-optimality.  Sandholm et al. (1999) focus on establishing a 
worst-case bound on the quality of the coalition structure when an agent has only time allowed to 
search a small fraction of the possible coalition structures.  This is motivated by the fact that 
finding the optimal coalition structure is NP-complete.  The authors also show that, if additional 
time remains, their anytime algorithm searches the coalition lattice further and establishes a 
monotonically lower tight bound.  There are other theoretical works in rationality for coalition 
formation  (Kahan and Rapoport 1984; Ketchpel 1994; Raiffa 1982; van der Linden and Verbeek 
1985; Zlotkin and Rosenschein 1994). 
 Finally, note that our coalition formation activities differ from that presented in (Sandholm et 
al. 1999) which defines coalition formation as three interacting activities:  
(1) Coalition structure generation where agents within each coalition coordinate their activities 

but do not coordinate between coalitions.  This means partitioning the set of agents into 
exhaustive and disjoint coalitions and the partition is called a coalition structure.  In our 
model, an agent forms a coalition from its neighborhood.  Some neighbors may be part of the 
coalition, may be part of other coalitions, or may be simply idle.  Coalitions in our model 
may also overlap. 

(2)  Solving the combinatorial optimization problem of each coalition whose objective is to 
maximize the utility of the coalition.  This means pooling the tasks and resources of the 
agents in the coalition, and solving their joint problem.  In our model, the initiating agent 
shoulders this optimization using imperfect information to increase the chance for a 
successful coalition. 
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(3) Dividing the value of the generated solution among agents.  There is no such explicit value 
distribution in our model.  Our agents are altruistic and directed to help if possible to achieve 
global goals, and thus do not require additional motivation such as rewards or values.  
However, our agents do want to manage their own resources efficiently and this motivates 
negotiations and the task allocation among agents. 

 
6. Conclusions 
 
We have described a coalition formation strategy that is dynamic and negotiation-based for a 
cooperative multiagent system.  Rational optimality in our problem domain is infeasible because 
the agents do not have complete information of other agents in the neighborhood, the 
environment is dynamic and events change, the environment is uncertain and noisy such that 
communication is not always perfect, agents do not have enough time to collect enough data to 
rationalize optimally and finally agents have limited computational resources to support 
combinatorial computations.  Our model has two stages: coalition initialization and coalition 
finalization.  The goal of the initialization is to extract a set of coalition candidates from an 
agent’s neighborhood, as a response to a detected event.  These initial candidates are scored for 
their potential utilities and ranked.  Then the initialization process allocates and assigns tasks or 
resources to the candidates.  We have introduced prioritized, bounded, greedy and worried 
algorithms for 1-to-1 or many-to-1 assignments.  Our initialization approach is for the agent to 
come up with a sub-optimal coalition that has the best chance to succeed given the incomplete 
information and dynamic resource profile that the agent has at the time of the formation.   To 
avoid over-demanding on a particular negotiation, the agent uses utility-based caps.  Since the 
surviving coalition is bound to be imperfect, the agent uses greedy algorithms to rely on a 
successful negotiation to propagate its mission further through a chain reaction behavior.  As 
insurance policies, the agent also uses worried algorithms to ask for more than it needs in its 
negotiations.  After the initialization, the initiating agent invokes negotiations to finalize the 
coalition.   

During the coalition finalization phase, a parent agent and its negotiation threads interact to 
provide situated awareness so that a parent agent may generate new instructions for its 
negotiations to modify the coalition. In a negotiation, information pertinent to individual 
constraints, commitments, and perceptions is exchanged.  The initiating agent monitors the 
progress of each of its negotiation threads and each negotiation thread is aware of the current 
status of its parent agent.  These threads are almost-autonomous, relieving the parent agent from 
detailed, local decision-making of iterations of negotiations.  The initiating agent oversees the 
negotiations, and carries out its other tasks and updates its additional instructions to the 
negotiation threads through dedicated awareness links.  In effect, an initiating agent conducts 1-
to-many negotiations when it is forming a coalition.  The parent agent also makes the decisions 
on relaxation and termination.  Relaxation allows an initiating agent to be less demanding in its 
requests.  Termination releases the responding agent from further involvement in useless 
negotiations.  These two awareness-based procedures allow the agent to be reactive in its 
coalition initialization since they help correct sub-optimality in the coalition at a later stage.  In 
that way, an initiating agent can continue with a new, refined coalition.  In conclusion, with this 
model, an agent is able to form a coalition that can give a “good-enough, soon-enough” solution 
and response to an event.  Our model allows the agents to be autonomous and that increases the 
robustness of the multiagent system.  It also allows the agents to self-organize into multiple, 
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overlapping, concurrent coalitions that can interact indirectly via actuation-perception links or 
internal agent-based rationalization, which in turn facilitates better coalition formation for the 
entire system over time.  Moreover, we have provided algorithms in resource allocation and task 
distribution.   

Finally, we have also presented an implementation that incorporates the coalition formation 
model and discussed some preliminary results.  Our multiagent system is able to detect and 
respond to two types of events.  One is for task distribution to address multiagent target tracking, 
and the other is for resource allocation to address CPU shortage problems.  An agent is capable 
of handling both events simultaneously as parts of two separate working coalitions. Our 
preliminary results are promising.   
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